Roll	No	:	

Total No. of Questions: 11]

BI-447

[Total No. of Printed Pages: 3

ASP-648

P.T.O.

ASP-648

M.A./M.Sc. (Final) Examination, 2021 MATHEMATICS

Paper - Opt. VI (Due Paper-VIII)

(Topology)

[Maximum Marks: 100 Time: 11/2 Hours (Marks: $2 \times 10 = 20$) Section-A Answer all ten questions (Answer limit 50 words). Each question carries Note:-2 marks. (अंक : 2 × 10 = 20) (खण्ड-अ) सभी दस प्रश्नों के उत्तर दीजिए (उत्तर-सीमा 50 शब्द)। प्रत्येक प्रश्न 2 अंक का है। नोट :-(Marks: $4 \times 5 = 20$) Section-B Answer all five questions. Each question has internal choice (Answer limit Note :-200 words). Each question carries 4 marks. (अंक : $4 \times 5 = 20$) (खण्ड-ब) सभी पाँच प्रश्नों के उत्तर दीजिए। प्रत्येक प्रश्न में विकल्प का चयन कीजिए (उत्तर-सीमा नोट :-200 शब्द)। प्रत्येक प्रश्न 4 अंक का है। (Marks : $20 \times 3 = 60$) Section-C Answer any three questions out of five (Answer limit 500 words). Each Note: question carries 20 marks. $(3ian : 20 \times 3 = 60)$ (खण्ड-स) पाँच में से किन्हीं तीन प्रश्नों के उत्तर दीजिए (उत्तर-सीमा 500 शब्द)। प्रत्येक प्रश्न 20 अंक का है।

(1)

Section-A

- I Define the following:
 - Discrete topology
 - (ii) Euclidean topology
 - (iii) Directed set in respect of a topological space
 - (iv) One point compactification
 - (v) Disconnected space
 - (vi) Cut point
 - (vii) Topological group
 - (viii) Regular space
 - (ix) Locally compact group
 - (x) Left Haar measure

Section-B

2. If $X = \{a, b, c\}$ list all topologies which contain exactly four open sets.

Or

Let (X, τ) be a topological space and $C \subset \tau$. Show that C is a basis for τ if and only if for each open set G and for each $x \in G$, there exists an element $B \in C$ s.t. $x \in B \subset G$.

3. Let (X, τ) be topological space, Y be a set and $f: X \to Y$ be a surjective function. Let $\mu = \{V \subset Y : f^1 \text{ (v) is open in } X\}$, then show that μ is a topology on Y.

Or

If Y is a subspace of a space X, then show that Y is compact if and only if every cover of Y by sets open in X contains a finite subcover of Y.

 Let X be a topological space and Y = (0, 1) be a discrete space. Then show that X is disconnected if and only if there exists a continuous surjection map from X onto Y.

BI-447

(2)

ASP-648

Let $f: X \to Y$ be a continuous map from a connected space X onto a topological space Y. Show that Y is connected.

5. Show that the property of a space being regular is hereditary property.

Or

Let H denotes a group that is also a topological space satisfying T_1 -axiom. Show that H is a topological group if and only if the map of H × H into H sending $x \times y$ into $x \cdot y^{-1}$ is continuous.

6. Let G be a topological group. Show that G is locally compact if there is one point of G with a local basis of compact sets. https://www.mgsuonline.com

Or

Let G be a topological group and H a compact subgroup of G. If $\frac{G}{H}$ is compact, then show that G is compact.

Section-C

- 7. Let X be a topological space and $X = A \cup B$, where A and B are closed sets in X. Let $f: A \to Y$ and $g: B \to Y$ be continuous functions. If f(x) = g(x) $\forall x \in A \cap B$, then show that there is a continuous function $h: X \to Y$ such that $h(x) = f(x) \ \forall \ x \in A$ and $h(x) = g(x) \ \forall \ x \in B$.
- 8. Show that a topological space X is Hausdorff if and only if every set in X converges to atmost one point in X.
- Show that a non-empty product space is connected if and only if each factor space is connected.
- 10. Let G be a topological group and H be a subgroup of G. Show that the topological closure of H, i.e. \overline{H} , is a subgroup of G.
- 11. Show that every locally compact group admits a left Haar measure.