ASP-2221

M.A./M.Sc. (Final) Examination, 2019 MATHEMATICS

Paper – Opt - V (Differential Geometry of manifolds)

Time allowed: Three hours

Maximum Marks: 100

SECTION - A

(Marks $2 \times 10 = 20$)

Answer all ten questions (Answer limit 50 words). Each question carries 02 marks.

खण्ड - अ

 $(3\dot{1}95\ 2\times 10=20)$

समस्त दस प्रश्नों के उत्तर दीजिए (उत्तर सीमा 50 शब्द) । प्रत्येक प्रश्न 02 अंक का है ।

SECTION - B

(Marks $4 \times 5 = 20$)

Answer all five questions. Each question has internal choice (Answer limit 200 words). Each question carries 04 marks.

खण्ड – ब

(अंक 4 × 5 = 20)

समस्त **पाँच** प्रश्नों के उत्तर दीजिए । प्रत्येक प्रश्न में विकल्प का चयन करें (उत्तर सीमा 200 शब्द) । प्रत्येक प्रश्न 04 अंक का है ।

SECTION - C

 $(Marks 20 \times 3 = 60)$

Answer any three questions out of five (Answer limit 500 words). Each question carries 20 marks.

खण्ड – स

 $(3\dot{9} + 3\dot{9} + 3\dot{9} + 3\dot{9} + 3\dot{9})$

पाँच में से किन्हीं **तीन** प्रश्नों के उत्तर दीजिए (उत्तर सीमा 500 शब्द)। प्रत्येक प्रश्न 20 अंक का है।

SECTION - A

(Marks $2 \times 10 = 20$)

(i) Define Jacobian map.

2

(ii) Define Exterior derivative.

2

(iii) Define lie groups and lie Algebras.

2

(iv) Define lie Transformations.

2

(v) Define Associated fibre bundle.

P.T.O.

	(vi) Define Riemannian Connection.	2
	(vii) Define Sectional Curvature.	2
	(viii) Define conformal curvature tensor.	2
	(ix) Define Narmal's Ganss formulae.	2
	(x) Define F-connection.	2
	SECTION – B	(Marks $4 \times 5 = 20$)
2.	Explain one Parameter group of transformations.	4
	OR	-
	Explain immersion and Embendings.	2+2=4
3.	Show that lie bracket is biliner.	4
	OR	
	Explain lie groups homomorphism and isomorphism.	2 + 2 = 4
4.	Explain induced bundle and tangent bundle.	2+2=4
٦.	OR	
	Explain Riemannian mainfolds.	. 4
5.	If a mainfold $Vn n > 3$ is conformly flat, then to prove :	
٥.	$(D_{\lambda}L)(\mu, v) = (D_{\mu}L)(\lambda, v)$	4
	OR Tanaar	
	Explain projective curvature Tensor.	
6.	Show that D is a Riemannian connection in V_n and V is v_n	vector valued in V _m is

ASP-2221

symmetric.

OR

2 + 2 =

Explain contravariant and covariant almost analytic vector fields:

- 7. (a) Show that the n-dimension sphere Sⁿ is a differentiable manifold (on a smooth manifold)
 - b) Let $V_{\lambda p}$ be the set of all p-forms. Then L_{λ} is a mapping $L_{\lambda}: V_{\wedge p} \to V_{\wedge p}$, then to prove that lie derivative preserve forms.
- 8. (a) The general linear group G2 (n, R) is a differential main folds of dimension n². 10
 - (b) If it is an Abstract subgroup and a regular sub manifold of a lie group G. Then to prove it is a Lie subgroup of G.

 10
- 9. Let X, Y be mainfolds and f₀: X → Y a morphism. Let α, β be vector bundles over X, Y respectively and Let f, g, α → β be two vector bundle morphism over f₀ then the map f + g defined by the formula (f + g)_x = f_x + g_x is also a vector bundle morphism.

Further more if $\psi: Y \to R$ is a function on Y, then the map ψ defined by

$$(\psi f)_x = \psi (f(x))f_x$$

is also a vector bundle morphism.

10 + 10 = 20

- 10. (a) Show that the conformal curvature tensor vanishes for Mainfolds with constant Riemannian curvature.
 - (b) Show that the only mainfold whose geodesics correspond to the geodesics of a manifold of constant Riemannian curvature are mainfolds of constant Riemannian-curvature.
- 11. (a) State and prove Weingraten equation. 2 + 8 = 10
 - (b) State and prove generalized Gauss and Mainardi Codozzi equation. 2+4+4=10